

PLANIFICACIÓN DEL CURSO

I. ACTIVIDAD CURRICULAR Y CARGA HORARIA

	Asignatura:	Métodos Numéricos	Código: ING2602
Se	emestre de la Carrera:	4to semestre	
	Carrera:	Cursos transversales	
	Escuela:	Escuela de Ingeniería	
	Docente(s):	Scarlett Stegmann (S1) - Manuel Suil (S2)	
	Ayudante(s):		
	Horario:	Cátedra S1 y S2: Miércoles y viernes 8:30-10:00 Ayudantía S1 y S2: Martes 16:15-17:45	

Créditos SCT:		6
Carga horaria		162 horas
semestral1:		
Carga horaria se	emanal:	9 horas

Tiempo de trabajo sincrónico	4,5 horas
semanal:	
Tiempo de trabajo asincrónico	4,5 horas
semanal:	4,5 1101 as

II. RESULTADOS U OBJETIVOS DE APRENDIZAJE ESPERADOS ESTE SEMESTRE

	/Introducir al estudiante en el uso de los métodos numérico	s para la	a soluciór	n de sister	nas algebraicos
1)	y ecuaciones diferenciales en problemas de la ingeniería.				
/ '					

Desarrollar algoritmos a partir de la teoría e implementarlos numéricamente.

¹ Considere que 1 crédito SCT equivale a 30 horas de trabajo total (presencial/sincrónico y autónomo/asincrónico) en el semestre.

III. UNIDADES, CONTENIDOS Y ACTIVIDADES

	UNIDAD 1: Error y representación de números					
Semana	Clase	Contenidos	Ayudantía	Tareas	Controles	
1	1	Presentación de curso y modalidad	/ (/			
1	2	Representación de números en computador				
2	3	Análisis de error	Recordatorio Python			

		UNIDAD 2: Interpolación e integración	numérica		
Semana	Clase	Contenidos	Ayudantía	Tareas	Controles
2	4	Aproximación de una función	\rangle /		
2	5	Polinomios de Lagrange	Andlinia da Euroa		\times
3	6	Interpolación	Análisis de Error		
4	7	Interpolación de Newton	Polinomios de	Tana 4	
4	-/	Dudas tarea 1	lagrange e interpolación	Tarea 1	
-	8	Spline cuadrática y cúbica	linto un ala ai é a		
5	- /	Feriado	Interpolación		
6	9	Integración numérica	Spline		
, ,	10	Cuadratura, punto medio y trapecio	Spille		
7	11	Fórmula de Newton Cotes y regla de Simpson	Integración numérica		

12 Paso	adaptativo		

		UNIDAD 3: Sistemas de ecuaciones algebr	aicas lineales		
Semana	Clase	Contenidos	Ayudantía	Tareas	Controles
8	13	Iteración de punto fijo. Bisección	Paso adaptativo	Tarea 2 (Lunes	CC1 (Sábado
	- /	- Repaso CC1 Paso adaptativo 06/10)			11/10)
-	\frac{-}{-}	Semana de autocuidado y aprendizaje autónomo.			
	14	Método de Newton Raphson. Falsa posición	No., to Do hoos		
9	15	Eliminación de Gauss Jordan	Newton Raphson		
10	-	Dudas Tarea 3		Tarea 3 (Jueves	
10	-	Feriado		30/10)	
11	16	Matrices LU y PLU	Matrices		
11	17	Métodos iterativos	Matrices		

UNIDAD 4: Optimización								
Semana	Clase		Contenidos		X	Ayudantía	Tareas	Controles
12	18	Búsqueda en línea	/			Métodos		
12	19	Dudas Tarea 4				iterativos		
13	20	Métodos sin derivadas				Búsqueda de línea	Tarea 4 (Lunes 17/11)	

	\times		UNIDAD 5: Ecuaciones Diferenciales O	rdinarias		
/	Semana		Contenidos	Ayudantía	Tareas	Controles
	13	21	Método de Euler + Estabilidad	/////		
\	14	22	Método de Runge Kutta y Dormand Prince	Runge Kutta y		CC2 (Sábado
	14	-	Repaso CC2	Dormand Prince		29/11)

UNIDAD 6: Ecuaciones Diferenciales Parciales				
Semana		Contenidos	Ayudantía	Tareas Controles
15	23	Introducción a las EDP	FDD.	
15	24	Método de Jacobi y Gauss Seidel en EDP	EDP	\times

IV. CONDICIONES Y POLÍTICAS DE EVALUACIÓN

Formas de evaluación, ponderaciones y otros:

Controles de cátedra (CC1 y CC2): corresponden a pruebas integrativas donde se evalúa una gran cantidad de materia. CC1 y CC2 se llevarán a cabo los días sábado desde las 9:00am a las 10:30am. El promedio simple de los controles de cátedra da lugar a la nota de cátedra NC:

$$NC = \frac{CC1 + CC2}{2}$$

 Tareas: consistirán en problemas aplicados en donde deberán integrar los contenidos vistos en el curso. El promedio simple de las tareas da lugar a la nota de actividades complementarias NAC:

$$NAC = \frac{T1 + T2 + T3 + T4}{4}$$

• La nota final (NF) del curso se obtiene de la siguiente forma:

$$NF = NC * 0.5 + NAC * 0.5$$

- En caso de que la o el estudiante no haya rendido CC1 y/o CC2, justificado por la DAE, existe la posibilidad de rendir un Control Recuperativo (CCr). En este caso, CCr reemplazará a la/s evaluación/es no rendida/s y la nota final se recalcula con este reemplazo. El control recuperativo a rendir se compondrá de los contenidos de la/s evaluación/es no rendida/s.
- Las notas estarán disponibles en U-Campus durante los 10 días hábiles posteriores a la evaluación.
- La asistencia es obligatoria para las evaluaciones. En caso de inasistencia justificada a una evaluación, se deben presentar los antecedentes a la Dirección de Asuntos Estudiantiles (DAE).
- U-Campus es el medio oficial de comunicación. Eventuales consultas serán respondidas lo antes posible durante el horario de trabajo.
- En caso de plagio y/o ser sorprendidos copiando se procederá según indique la normativa de la Escuela de Ingeniería.
- Este curso no considera la realización de examen. La condición de aprobación del curso es tener una nota promedio de controles NC igual o superior a 4.0 y la nota de las actividades complementarias NAC igual o superior a 4.0.
- Si $NF \ge 4.0$ pero $NC \le 4.0$ o $NAC \le 4.0$, la nota final será de 3.9 dado que no cumple con los requisitos de aprobación. En cualquier otro caso la NF se calcula como indica el punto 3.

V. BIBLIOGRAFÍA Y RECURSOS OBLIGATORIOS

- J. Kiusalaas, "Numerical Methods in Engineering with Python", Cambridge University Press, 2010.
- A. Quarteroni, R. Sacco, F. Saleri, "Numerical Mathematics", Springer, 2000.

VI. BIBLIOGRAFÍA Y RECURSOS COMPLEMENTARIOS

- S. Chapra, "Applied Numerical Methods in Engieneering", McGraw-Hill, 2012.
- W. Press, S. Teukolsky, H. Bethe, W. Vetterling, B. Flannery, "Numerical Recipes", Cambridge University Press, 2007.