

PLANIFICACIÓN DE CURSO

Segundo semestre 2025

I. ACTIVIDAD CURRICULAR Y CARGA HORARIA

Asignatura:	Simulación de Sistemas Complejos Código: IND3	3202
Semestre de la Carrera:	2025-2	
Carrera:	Ingeniería Civil Industrial	
Escuela:	Ingeniería	
Docente(s):	Manuel Suil Jorquera	
Ayudante(s):		\times
Horario:	Sección 1: Martes y Jueves 12:00, Viernes 12:00 (Ayudantía)	

Créditos SCT:	6
Carga horaria	180 horas
semestral ¹ :	
Carga horaria semanal:	12 horas

Tiempo de trabajo directo semanal:	4,5 horas
Tiempo de trabajo del estudiante	7,5 horas
semanal:	7,3 1101 85

II. RESULTADOS U OBJETIVOS DE APRENDIZAJE ESPERADOS ESTE SEMESTRE

- 1) Entiende distintas maneras de modelar la incertidumbre en sistemas complejos, además de solucionar adecuadamente cada situación.
- 2) Implementa y resuelve computacionalmente los modelos de simulación, analizando los resultados de múltiples escenarios.
- Plantea y resuelve modelos de optimización bajo incertidumbre, para tomar una decisión en escenarios promedio o pesimistas.

¹ Considere que 1 crédito SCT equivale a 30 horas de trabajo total (directo y autónomo) en el semestre.

III. UNIDADES, CONTENIDOS Y ACTIVIDADES

	Actividades de enseñanza y aprendizaje		Actividades de evaluación	
Semana	Contenidos	Tiempo directo	Tiempo trabajo autónomo del o la estudiante	diagnóstica, formativa y/o sumativa
S1 18/08 – 22/08	Presentación, repaso de probabilidad y variables aleatorias, motivación de procesos estocásticos. Simulación de variables aleatorias.	4,5 horas	7,5 horas	
S2 25/08 – 29/08	Procesos estocásticos a tiempo discreto, cadenas de Márkov. Simulación básica. Distribuciones a n pasos.	4,5 horas	7,5 horas	
S3 01/09 - 05/09	Distribuciones a n pasos y estacionarias. Estados recurrentes y transitorios. Aplicaciones simples de decisión. Simulaciones con matrices de transición.	4,5 horas	7,5 horas	
S4 08/09- 12/09	Procesos estocásticos a tiempo continuo, Poisson y nacimiento - muerte.	4,5 horas	7,5 horas	Laboratorio 1
S5 15/09- 19/09 Feriados 18 y 19	Suspensión de actividades universitarias	0 horas	3 horas	
S6 22/09 - 26/09	Introducción a Teoría de colas y cálculo de métricas de desempeño. Análisis transitorio y su impacto en métricas simuladas.	4,5 horas	7,5 horas	

S7 29/09 - 03/10	Continuación de Análisis transitorio y su impacto en métricas simuladas. Construcción en Arena del modelo M/M/1 visto en Python.	4,5 horas	7,5 horas	Laboratorio 2
S8 06/10 - 10/10	Presentaciones.	4,5 horas	7,5 horas	Entrega Tarea
RECESO 13/10 - 17/10 AUTOCUIDADO				
S9 20/10 - 24/10	Simulación avanzada en Arena: uso de múltiples recursos, programación de horarios y prioridades.	4,5 horas	7,5 horas	Control 1
\$10 27/10 – 31/10 Feriado 31/10	Repaso de modelamiento de problemas de Optimización e introducción de incertidumbre a los modelos.	3 horas	7,5 horas	
S11 03/11 – 07/11	Programación dinámica estocástica. Introducción a árboles de decisión con incertidumbre en las transiciones.	4,5 horas	7,5 horas	Laboratorio 3
S12 10/11 – 14/11	Optimización robusta. Formulación de modelos robustos y técnicas para asegurar buen desempeño bajo escenarios adversos.	4,5 horas	7,5 horas	
\$13 17/11 – 21/11	Optimización estocástica para buen desempeño promedio. Comparación con optimización robusta.	4,5 horas	7,5 horas	Control 2

S14 24/11 – 28/11	Presentaciones Finales (Horario de Cátedra)	4,5 horas	7,5 horas	Laboratorio 4 Presentación proyecto final
S15 01/12 – 05/12	Presentaciones Finales (Horario de Cátedra y horario de ayudantía sólo en caso de ser necesario)	4,5 horas	7,5 horas	Presentación proyecto final
08/12 - 20/12 Feriado 08/12	PERÍODO DE EXÁMENES Y EVALUACIONES FINALES (calendario es definido por Escuela de Ingeniería)			

IV. CONDICIONES Y POLÍTICAS DE EVALUACIÓN

El curso contará con las siguientes evaluaciones:

- 2 Controles
- 4 Laboratorios.
- 1 Tarea
- 1 Proyecto final.

Donde:

- 1. Controles (CC): Evaluaciones teóricas a realizarse en horario de cátedra del día jueves de las semanas correspondientes.
- 2. **Tarea (NT)**: Trabajo realizado en grupos de 4 a 5 estudiantes (seleccionados aleatoriamente). La tarea es práctica, además evalúa un informe, códigos y una presentación final breve.
- **3.** Laboratorios (NL): Trabajos de manera individual a realizarse durante algunas ayudantías. Son de tipo computacional y deben entregarse el código y resultados durante la hora de ayudantía. Su promedio corresponde a la nota de Laboratorio NL.
- 4. **Proyecto final (PF)**: Se presentarán 14 temas diferentes a mediados de semestre. Los estudiantes, en grupo de 5 o 4 personas podrán seleccionar uno de los temas. El proyecto evalúa un informe, códigos y una presentación final.

Nota de control (NC): Se calcula en base a la siguiente ponderación:

NC = 50% CC1 + 50% CC2

Este curso no cuenta con examen ni examen recuperativo.

Quienes hayan faltado a un control y cuentan con justificación aprobada por la DAE, tienen la opción de rendir un control recuperativo que evaluará los contenidos del control faltante. Quienes no cuenten con justificación aprobada se les asignará la nota mínima (1.0) en esa evaluación sin posibilidad de recuperarla.

Nota de actividades complementarias (NAC): Se calcula como:

NAC=20% NT + 40% NL + 40% PF

La **Nota final** se obtendrá de acuerdo con lo siguiente

NF = 40% NC + 60% NAC

El criterio de aprobación es **NC≥4.0** y **NAC≥4.0**. En caso de que una de las notas sea menor a 4.0 y el promedio de ambas es superior a 4.0, se le asignará la nota 3.9 como Nota Final.

La asistencia a cátedra es obligatoria, para aprobar el curso se exige una asistencia a cátedra del 80% o superior. Quienes no cumplan con ese porcentaje y tengan una nota final calculada de 4.0 o superior, se le asignará una nota final de 3.9.

Otras consideraciones:

- Las notas estarán disponibles en U-Campus durante los 10 días hábiles posteriores a la evaluación.
- La asistencia es obligatoria para las evaluaciones. En caso de inasistencia justificada a una evaluación, se deben presentar los antecedentes a la Dirección de Asuntos Estudiantiles (DAE).
- U-Campus y el correo institucional son los principales medios de comunicación. Eventuales consultas serán respondidas lo antes posible durante el horario de trabajo.
- En caso de plagio y/o ser sorprendidos copiando se procederá según indique la normativa de la Escuela de Ingeniería.

V. BIBLIOGRAFÍA Y RECURSOS OBLIGATORIOS

- S. Ross, Stochastic Processes, Wiley, New York, 1993.
- M. Pidd, Computer Simulation in Management Science, Wiley, 2006.

VI. BIBLIOGRAFÍA Y RECURSOS COMPLEMENTARIOS

- S. Ross, Introduction to Probability Models, Academic Press, Boston, 1993S. Ross, Simulation, Academic Press, 2012.
- 4. A. Ben-Tal, L. El Ghaoui y A. Nemirovski, Robust Optimization, Princeton University Press, 2015.
- 5. J. Birge y F. Louveaux, Introduction to Stochastic Optimization, Springer, 2011.