

PLANIFICACIÓN DEL CURSO

I. ACTIVIDAD CURRICULAR Y CARGA HORARIA

	Asignatura:	Programación Código: ING1302
	Semestre de la Carrera:	I semestre
	Carrera:	Obligatorio para todas las carreras de Ingeniería Civil
\	Escuela:	Escuela de Ingeniería
	Docente(s):	Carol Moraga - Alexander Vergara - María de los Angeles Rodríguez
	Ayudante(s):	Por definir
	Horario:	Jueves 12:00-13:30, Viernes 10:15-11:45, Ayudantía Miércoles 16:15-17:45

Créditos SCT:		5
Carga horaria		180 horas
semestral ¹ :		
Carga horaria se	10 horas	

Tiempo de trabajo sincrónico semanal:	3 horas
Tiempo de trabajo asincrónico semanal:	7 horas

II. RESULTADOS U OBJETIVOS DE APRENDIZAJE ESPERADOS ESTE SEMESTRE

- 1) Descomponer un problema y hacer abstracciones utilizando el razonamiento lógico y algorítmico.
- Plantear la solución a los problemas resultantes de la descomposición: diseñar contratos, especificar el propósito del código, generar casos de prueba y programar la solución.
- 3) Detectar y corregir errores de programación.

¹ Considere que 1 crédito SCT equivale a 27 horas de trabajo total (presencial/sincrónico y autónomo/asincrónico) en el semestre.

III. UNIDADES, CONTENIDOS Y ACTIVIDADES

		UNIDAD 1:		
	Semana	Contenidos	Ayudantía	Actividades
	1	Introducción/Hardware y lógica en la programación	No hay ayudantía	
	2	Estructuras básicas y diagramas de flujo/Ejercicios de estructuración	No hay ayudantía	
•	3	Variables de tipo numérico y string/Introducción a plataformas de ejecución de código y ejercicios	Ejercicios de estructuración de código	Tarea I (Publicación)
	4	Input y Bucles (While, For)/Feriado	Ejercicios de variables	

	UNIDAD 2:		
Semana	Contenidos	Ayudantía	Actividades
5	Sentencia condicional, operador AND y OR/Listas, tuplas y diccionarios	Ejercicios de Input y Bucles	
6	Funciones I/Feriado	Ejercicios con sentencias y listas/tuplas/dicciona rios	Tarea I (Entrega)
7	Funciones II (Pandas)/Ejercicios Repaso	Ejercicios de Funciones (Pandas)	

8 CC1/ Funciones y detección de errores Ejercicios de Repaso CC1

/	UNIDAD 3:				
Semana	Contenidos	Ayudantía	Actividades		
9	Recursividad I/Ejercicios de Recursividad	Ejercicios de Turtle	Tarea II (Publicación)		
10	I/O de Archivos / Ejercicios I/O de archivos	Ejercicios de Recursividad			
11	Introducción a POO, Herencia y polimorfismo/ Ejercicios y técnicas en POO	Ejercicios de archivos			
12	Repaso POO/ Feriado	Ejercicios de POO	Tarea II (Entrega)		
13	Repaso/CC2	Repaso	CC2		
14	Sobrecarga de operadores / Ejercicios	Ejercicios de preparación Examen			
15	Repaso/Examen	Ejercicios de preparación Examen	Examen		

IV. CONDICIONES Y POLÍTICAS DE EVALUACIÓN

Se evaluará el aprendizaje del contenido presentado, mediante:

- Control de Cátedra 1 CC1 (40%)
- Control de Cátedra 2 CC2 (40%)
- Actividades Complementarias NAC (20%)

Las actividades complementarias consisten en 2 Tareas, desarrolladas de manera individual. Las Tareas consistirán en la resolución de un problema utilizando lo aprendido en las Cátedras. El curso se aprueba con un Nota final (NF) y se exime de examen ponderado igual o mayor 5,5. Tanto el promedio de los Controles de Cátedra (CC1+CC2) como de las Actividades Complementarias (NAC) deber ser igual o mayor a 4,0 para aprobar el curso.

Estudiantes que se ausenten justificadamente a alguno de los Controles de Cátedra tendrán la oportunidad de recuperarlo a través del Examen que será también una instancia recuperativa (justifificativo se tramita a través de Dirección de Asuntos Estudiantiles). Las notas de tareas no se recuperan.

El Examen (o recuperativo) se puede rendir al tener NF (CC1(40%)+CC2(40%)+NAC(20%)) mínima de 3.7. Los alumnos con NF entre 3.7 y 3.9 , si aprueban el Examen, la nota de aprobación será igual a 4.0. Este criterio no se puede modificar sin previa autorización de la Dirección de Escuela. Para calcular la nota de aprobración, el examen valdrá un 50% y la NF un 50%.

Un/a estudiante que cometa plagio, mal uso de chatgpt, conducta sospechosa durantes los controles; obtendrá un **1,0** en la evaluación y el caso será informado a Escuela de Ingeniería.

V. BIBLIOGRAFÍA Y RECURSOS OBLIGATORIOS

- Dawson, Michael 2010:. **Python Programming for the Absolute Beginner.** CENGAGE Learning.
 - https://buscador.uoh.cl/client/es_CL/inicio/search/results?qu=Pythom+programming +for+the+absolute&te=
- Kernighan, B. and R. Pike, 1999: The Practice of Programming. Lucent Technologies.

https://buscador.uoh.cl/client/es CL/inicio/search/results?qu=the+practice+of+program min&te=

Felleisen M., R. Findler, M. Flatt, and S. Krishnamurthi, 2001: **How to Design Programms: an introduction to programming and computing.** MIT Press.

https://buscador.uoh.cl/client/es_CL/inicio/search/results?qu=how+to+desing+program ms&te=

- Python Tutorial w3schools.com. https://www.w3schools.com/python/.
- Farrell, Programing Logic and Design.

VI. BIBLIOGRAFÍA Y RECURSOS COMPLEMENTARIOS

- Google Colab: https://colab.research.google.com/