

PLANIFICACIÓN DEL CURSO

I. ACTIVIDAD CURRICULAR Y CARGA HORARIA

	Asignatura:	Programación Código: ING1302
	Semestre de la Carrera:	Segundo semestre
	Carrera:	Obligatorio para todas las carreras de Ingeniería Civil
	Escuela:	Escuela de Ingeniería
	Docente(s):	Alexander Baumgartner
	Ayudante(s):	Iván Bozo
Horario: Martes 10:15-11:45, Jueves 10:15-11:45, Ayudantía Lunes 16:15-17		

Créditos SCT:	6
Carga horaria	180 horas
semestral ¹ :	
Carga horaria	10 horas
semanal:	

Tiempo de trabajo sincrónico semanal:	3 horas
Tiempo de trabajo asincrónico semanal:	7 horas

II. RESULTADOS U OBJETIVOS DE APRENDIZAJE ESPERADOS ESTE SEMESTRE

- 1) Descomponer un problema y hacer abstracciones utilizando el razonamiento lógico y algorítmico.
- Plantear la solución a los problemas resultantes de la descomposición: diseñar contratos, especificar el propósito del código, programar la solución y generar casos de prueba.
- 3) Detectar y corregir errores de programación.

¹ Considere que 1 crédito SCT equivale a 27 horas de trabajo total (presencial/sincrónico y autónomo/asincrónico) en el semestre.

III. UNIDADES, CONTENIDOS Y ACTIVIDADES

UNIDAD 1: Fundamentos de Programación				
Semana	Contenidos	Laboratorio	Actividades	
1	Introducción y motivación			
2	Hardware y lógica en la programación Diagramas de flujo Estructuras básicas y código estructurado			
3	Variables y tipos de dato (numérico, string, booleano) Operadores comunes	Introduccion, Instalación y uso de PyCharm,		
3	Condicionales y operador AND y OR	Contenidos de la semana 2		
4	Input y Output Bucles (While, For)	Contenidos de la semana 2 / 3		

UNIDAD 2: Estructura de Datos y Funciones					
Semana		Contenidos		Laboratorio	Actividades
5	Listas, tuplas y diccionario	5		Contenidos de la semana 3 / 4	12.9. Entrega Tarea 1 en Ucampus
6	CC1, Instancia de Feedbacl	k prueba	X	Contenidos de la semana 4 / 5	24.9. CC1

7	Librería Turtle	Contenidos de la semana 5 / 6	
8	Funciones y Recursividad	Contenidos de la semana 6 / 7	11.10. Entrega Tarea 2 en Ucampus
9	Repaso CC2 y CC2	Contenidos de la semana 7 / 8	17.10. CC2
	LINIDAD 2: Tánicos Avanzados		

UNIDAD 3: Tópicos Avanzados				
Semana	Contenidos	Laboratorio	Actividades	
10	I/O de archivos	Contenidos de la semana 8 / 9		
11	Depuración (debugging) y detección de errores	Contenidos de la semana 9 / 10		
12	Introducción a Programación Orientada a Objetos (POO) Herencia y polimorfismo	Contenidos de la semana 10 / 11		
13	La librería numpy	Contenidos de la semana 11 / 12		
14	Repaso y CC3	Contenidos de la semana 12 / 13	21.11. CC3	

IV. CONDICIONES Y POLÍTICAS DE EVALUACIÓN

Se evaluará el aprendizaje del contenido presentado, mediante:

- 3 Controles de Cátedra (CC)
- 2 Tareas

El promedio simple de los 3 Control de Cátedra conforman la Nota de Cátedra (NC). El promedio simple de las 2 Tareas conforman la Nota de Actividades Complementarias (NAC). La aprobación del curso se logra con NC >= 4,0 y NAC >= 4,0. La nota final se calcula como 0,6*NC + 0,4*NAC. Este curso no considera la realización de Examen.

Estudiantes que se ausenten justificadamente a alguno de los Controles de Cátedra tendrán la oportunidad de recuperarlo a través de un control recuperativo (justificativo se tramita a través de Dirección de Asuntos Estudiantiles). Las notas de tareas no se recuperan.

Un/a estudiante que cometa plagio obtendrá un **1,0** en la evaluación y el caso será informado a Escuela de Ingeniería.

V. BIBLIOGRAFÍA Y RECURSOS OBLIGATORIOS

Farrell, Joyce (2013): Introducción a la Programación. Lógica y Diseño. Cengage, 7°Edición. Libro digital:

https://elibro.net/es/lc/bibliouoh/titulos/93265

Trejos, Omar y Luis Muñoz (2021): Introducción a la Programación con Python. RA-MA. Libro digital:

https://elibro.net/es/ereader/bibliouoh/230298

Marzal, Andres, Isabel Gracias y Pedro García (2014): Introducción a la Programación con Python 3. Universitat Jaume I. Libro digital: https://elibro.net/es/ereader/bibliouoh/51760

VI. BIBLIOGRAFÍA Y RECURSOS COMPLEMENTARIOS

Juganary-Mathieu, Mihaela (2014): Introducción a la Programación. Patria. Libro digital: https://elibro.net/es/lc/bibliouoh/titulos/39449

Aquino, Miguel y Fernando Aquino (2021): Aprende Programación de Computadoras. Bubok. Libro digital: https://elibro.net/es/ereader/bibliouoh/260300

Fernández, María A. (): Introducción Práctica a la Programación con Python.
Universidad de Alcalá. Libro digital:
https://elibro.net/es/ereader/bibliouoh/124259

Python Tutorial w3schools.com. https://www.w3schools.com/python/.

Google Colab: https://colab.research.google.com/

Code Wars: https://www.codewars.com/

El Libro de Python: https://ellibrodepython.com/

Python Tutor: https://pythontutor.com/python-compiler.html#mode=edit