

ELE2301 Análisis de Circuitos Eléctricos PLANIFICACIÓN DE CURSO

Primer Semestre académico 2023

I. ACTIVIDAD CURRICULAR Y CARGA HORARIA

Asignatura:	Análisis de Circuitos Eléctricos		Código: ELE2301
Semestre de la Carrera:	3		
Carrera:	Ingeniería Civil Eléctrica		
Escuela:	Escuela de Ingeniería		
Docente(s):	Alfonso Ehijo, Ignacio Bugueño		
Ayudante(s):	Paula Peñaloza		
Horario:	Cátedras: Martes 10:15-11:45, Jue	ves 12:00-13:30; Ayudantías: Mar	tes 12:00-13:30

Créditos SCT:		6
Carga horaria		180 horas
semestral ¹ :		
Carga horaria se	emanal:	10,6 horas

Tiempo de trabajo directo semanal:	4,5 horas
Tiempo de trabajo del estudiante	6,1 horas
semanal:	0,1 1101 as

II. RESULTADOS U OBJETIVOS DE APRENDIZAJE ESPERADOS ESTE SEMESTRE

Conocer las variables eléctricas de corriente, voltaje, potencia y circuitos concentrados e 1) invariantes, de acuerdo a sus propiedades y características. Conocer las configuraciones básicas de circuitos eléctricos y sus propiedades. 2) Conocer, comprender y aplicar las leyes de Kirchhoff de voltaje y corriente. 3) Modelar circuitos eléctricos lineales mediante ecuaciones algebraicas y diferenciales ordinarias. 5) Aplicar herramientas matemáticas para la resolución y análisis de circuitos eléctricos lineales Resolver y analizar circuitos eléctricos lineales de corriente continua tanto en régimen transitorio 6) como estacionario. Resolver y analizar circuitos eléctricos lineales de corriente alterna en estado estacionario utilizando 7) análisis fasorial. 8) Aplicar elementos básicos de diseño de circuitos eléctricos para cumplir un determinado propósito. Comparar y evaluar distintos circuitos eléctricos para cumplir un determinado propósito. 9) Simular circuitos eléctricos, utilizando modelos físico-matemáticos en el marco de los sistemas 10) lineales.

¹ Considere que 1 crédito SCT equivale a 30 horas de trabajo total (directo y autónomo) en el semestre.

III. UNIDADES, CONTENIDOS, ACTIVIDADES Y FECHAS TENTATIVAS

UNIDAD:				
		Actividades de enseñanza y aprendizaje		
Semana	Contenidos	Tiempo directo	Tiempo trabajo autónomo del o la estudiante	Actividades de evaluación diagnóstica, formativa y/o sumativa
1	Introducción del curso, Test de Diagnóstico y Presentaciones	3,0	7,6	
2	Conceptos básicos sobre los circuitos eléctricos	3,0	7,6	
3	Teoremas y Metodologías de Análisis de Circuitos Eléctricos	4,5	6,1	
4	Teoremas y Metodologías de Análisis de Circuitos Eléctricos	4,5	6,1	Publicación Tarea 1 (6-Abril)
5	Teoremas y Metodologías de Análisis de Circuitos Eléctricos	4,5	6,1	Entrega Tarea 1 (13-Abril)
6	Circuitos Eléctricos de Primer Orden y almacenamiento de energía	4,5	6,1	Control 1 (18-Abril)
7/(Circuitos Eléctricos de Primer Orden y almacenamiento de energía	4,5	6,1	
8	Circuitos Eléctricos de Primer Orden y	4,5	6,1	Publicación Tarea 2 (4-Mayo)

	almacenamiento de			
	energía			
9	Circuitos Eléctricos de Primer Orden y almacenamiento de energía	4,5	6,1	Entrega Tarea 2 (18-Mayo)
10	Circuitos Eléctricos de Corriente Alterna	4,5	6,1	Control 2 (23-Mayo)
11	Circuitos Eléctricos de Corriente Alterna	4,5	6,1	
12	Circuitos Eléctricos de Corriente Alterna	4,5	6,1	Publicación Tarea 3 (8-Junio)
13	Laboratorio	4,5	6,1	Entrega Tarea 3 (15-Junio)
14	Introducción a Sistemas Trifásicos	4,5	6,1	Control 3 (20-Junio)
15	Introducción a Sistemas Trifásicos	4,5	6,1	
Ex 1		0	10,6	
Ex 2		0	10,6	Examen (Por Definir)

IV. CONDICIONES Y POLÍTICAS DE EVALUACIÓN

DISPOSICIONES GENERALES Y PONDERACIONES

- 1. LA ASIGNATURA SE EXIME SI: NP \geq 5.5, siempre y cuando NT \geq 4.0 y NL \geq 4.0.
- 2. LA ASIGNATURA SE APRUEBA SI: NF \geq 4.0 siempre y cuando NC \geq 4.0, NT \geq 4.0, y NL \geq 4.0.
- 3. La Nota Final (NF) está compuesta por una Nota de Cátedra (NC), una Nota de Tareas (NT), y una Nota de Laboratorios (NL) con las siguientes ponderaciones:

$$NF = 0.35*NC + 0.3*NT + 0.3*NL.$$

4. La Nota de Cátedra (NC) está compuesta por las Nota de Presentación (NP) y Examen (NE) con las siguientes ponderaciones:

$$NC = 0.6*NP + 0.4*NE.$$

5. La Nota de Presentación (NP) está compuesta por las notas de los tres Controles de Cátedra (NCC), con las siguientes ponderaciones:

$$NP = (\frac{1}{3})*NCC1 + (\frac{1}{3})*NCC2 + (\frac{1}{3})*NCC3$$

6. La Nota de Tareas (NT) está compuesta por las notas de las tres evaluaciones, con las siguientes ponderaciones:

$$NT = (\frac{1}{3})*NT1 + (\frac{1}{3})*NT2 + (\frac{1}{3})*NT3$$

7. La Nota de Laboratorios (NL) está compuesta por la nota de la única evaluación

SOBRE EL EXAMEN RECÚPERATIVO

Si el estudiante no cumple en primera instancia con alguno de los criterios de aprobación, podrá optar a un examen recuperativo. En caso de aprobar dicha evaluación, la nota final del curso será 4.0.

V. BIBLIOGRAFÍA Y RECURSOS OBLIGATORIOS

- Fundamentals of Electric Circuits, 7th Edition, Charles Alexander and Matthew Sadiku, 2020
- Dorf, R.C.; Svoboda, J.A., "Circuitos Eléctricos", 9º Ed., Alfaomega, 2015.
- Apuntes de Clases

VI. BIBLIOGRAFÍA Y RECURSOS COMPLEMENTARIOS

- Thomas, R.E.; Rosa A.J., "The analysis and design of linear circuits", 5ta Ed., John Wiley and Sons, 2006.
- Nilsson, J. W., & Riedel, S. A. (1993). Electric circuits. Reading, Mass: Addison-Wesley Pub. Co.

Para cualquier comunicación relacionada con la asignatura se recomienda el uso de la plataforma U-Campus o durante las clases.