

Carrera de Pedagogía en Matemática

PROGRAMA Y PLANIFICACIÓN DE ASIGNATURA

	Nombre asignatura	
	Estimación y métodos numérico	s
Código	SCT	Nivel
MA3000	4	Semestre 5, año 3
Ámbito de formación	Carácter del curso	
Enseñanza y aprendizaje de la matemática		Obligatorio
Requisitos		
MA2000 Algoritmos		

	Carga académic	a semestral	
Presencial (cátedra)	Presencial (ayudantía)	No presencial	Total
45	0	75	120
	Carga académi	ca semanal	
Presencial (cátedra)	Presencial (ayudantía)	No presencial	Total
3	0	3.5	6.5

Objetivos de aprendizaje

- Identificar problemas matemáticos que involucran estimación y aproximación numérica.
- Conocer y aplicar métodos numéricos para la resolución de problemas matemáticos y aplicados.
- Implementar métodos numéricos utilizando herramientas computacionales para la resolución de problemas matemáticos y aplicados.
- Contrastar diversos métodos numéricos aplicables a la resolución de un problema específico.

Metodología docente

La metodología de trabajo incluirá presentaciones expositivas, momentos de trabajo activo por parte de los estudiantes a través de trabajo individual y en grupos pequeños, e instancias de discusión colectiva.

Se trabajará con el lenguaje de programación R con el fin de desarrollar un pensamiento analítico computacional, a través de actividades de resolución de problemas mediante programación.

La asignatura no tiene horario de ayudantía.

Se evaluará los aprendizajes a través de pruebas escritas y de tareas, involucrando preguntas tanto de conocimiento de los contenidos como de su aplicación.

Unidades temáticas

Carrera de Pedagogía en Matemática

 Unidad 1: Programación Introducción al lenguaje de programación R 		
 Funciones primitivas (aritméticas, lógicas, estadísticas) 		
 Creación de nuevas funciones 	4	
 Control de flujo: ciclos, condiciones 	4	
o Gráficos		
Comparación con otros lenguajes de programación (p.ej. Matlab/Octave, Haskell)		
 Paradigmas imperativo y funcional 		

Ur	Unidad 2: Introducción al análisis numérico		
•	Estimación de cantidades y de resultados de operaciones		
•	Propagación de errores		
•	Precisión y cifras significativas	2	
•	Truncatura y redondeo		
•	Representación de números reales en el computador vía punto flotante	5	

Unidad 3: Aproximación e interpolación numérica		# semanas
•	Aproximación de números reales: π, e, raíces, otros	
•	Búsqueda de ceros de funciones. Métodos de bisección, secante, Newton-Raphson	4
•	Aproximación de valores de una función vía polinomios de Taylor	4
•	Interpolación de funciones mediante polinomios y funciones spline	

Unidad 4: Otros problemas de cálculo numérico		
Derivación numérica y su aplicación a la optimización		
Integración numérica y su aplicación al cálculo de áreas		
Resolución de sistemas lineales. Sistemas bien y mal condicionados. Métodos de	4	
Gauss, Jacobi y Gauss-Seidel		
Generación de números aleatorios		

Información importante

Sobre la asistencia

 No hay requisito de asistencia mínima para aprobar el curso. La asistencia a clases de cátedra es voluntaria.

Sobre las evaluaciones

- Luego de cada evaluación, habrá una instancia de retroalimentación en el horario de cátedra. Los resultados de las evaluaciones serán entregados en un plazo de diez días hábiles.
- Luego de la entrega de notas de las pruebas, se dará la oportunidad en horario de cátedra para revisarlas y poder manifestar cualquier duda o desacuerdo con la corrección.

Sobre el examen

• Se eximen de rendir el examen final del curso aquellos estudiantes cuya nota de presentación a examen sea de 6,0 o superior.

Carrera de Pedagogía en Matemática

- Aquellos estudiantes cuya nota final (post examen) sea de 3,7 3,8 o 3,9 podrán dar un examen de segunda instancia.
- El examen de segunda instancia será similar al primer examen en términos de cobertura curricular, dificultad y duración, y su nota reemplazará (en caso de ser superior) aquélla del primer examen para el cálculo de la nota final del curso.

Horario y lugar de atención para consultas

- Jueves de 12:00 a 13:30 en el Instituto de Ciencias de la Educación, oficina 738 (DMG).
- Martes de 10:00 a 11:30 en el Instituto de Ciencias de la Educación, oficina 749 (JN).
- Contacto electrónico: a través de UCampus o en david.gomez@uoh.cl, jairo.navarrete@uoh.cl.

Otros

- La semana 15 se realizará actividades de repaso de los contenidos del curso para el examen.
- Ante cualquier situación extra-académica que perjudique su asistencia a clases o su capacidad de concentrarse adecuadamente en éstas, se invita a contactar a los docentes, al jefe de carrera, o a la Dirección de Asuntos Estudiantiles a la brevedad para poder ofrecer apoyo.

Carrera de Pedagogía en Matemática

			Planificación de evalua	ciones	
Evaluación	Semana	Contenidos	Subcompetencias asociadas	Descripción de la evaluación	Indicadores de logro
Parcial 1 (30%)	4	Unidad 1	2.1.3, 2.1.6, 2.1.7, 2.2.12	Prueba en computador	 Aplica pensamiento computacional/algorítmico para la resolución de problemas Aplica herramientas matemáticas y computacionales Resuelve problemas de cálculo numérico mediante programación en el lenguaje R
Parcial 2 (20%)	6 (publicación) 8 (entrega)	Unidad 2	2.2.2, 2.2.3, 2.2.12, 2.3.6	Tarea	 Comprende la relación entre los números reales y los números representador por el computador Cuantifica el error de representación y/o cálculo Conoce y explica supuestos errores de cálculo inducidos por el uso de herramientas computacionales
Parcial 3 (25%)	11	Unidad 3	2.1.1, 2.1.3, 2.2.2, 2.1.7	Prueba en computador	 Resuelve problemas a través del cálculo numérico Aplica distintos métodos numéricos para la resolución de un problema Relaciona conceptualmente distintos métodos numéricos entre sí
Parcial 4 (25%)	13 (publicación) 15 (entrega)	Unidad 4	2.1.1, 2.1.3, 2.2.2, 2.1.7	Tarea	 Resuelve problemas a través del cálculo numérico Aplica distintos métodos numéricos para la resolución de un problema Relaciona conceptualmente distintos métodos numéricos entre sí
Examen	16/17	Todas las unidades	Todas	Prueba en computador	 Analiza y realiza cálculo numérico integrando los conocimientos de las diversas unidades del curso

Ponderaciones para el cálculo de la nota de presentación a examen: 30%, 20%, 25%, 25% (ver la tabla).

Ponderaciones para el cálculo de la nota final del curso: Nota de presentación a examen 70%; Nota de examen 30%.

Carrera de Pedagogía en Matemática

Bibliografía

Básica

- Osses, A. (2011). Análisis numérico. Santiago: J. C. Sáez.
- Rico, L. (1999). Estimación en cálculo y medida. Madrid: Síntesis.

Complementaria

Ezquerro, J. A. (2012). Iniciación a los métodos numéricos. Logroño: Universidad de La Rioja.
 Disponible online en https://dialnet.unirioja.es/descarga/libro/489813.pdf (último acceso: 23/03/2019)

Competencias del perfil de egreso a las que contribuye el curso

- 2.1. Aplicar el ciclo de modelamiento matemático para abordar problemas en diversos contextos.
- 2.2. Disponer de conocimientos matemáticos sólidos y relacionarlos entre sí para abordar la enseñanza de la matemática.
- 2.3. Disponer de conocimientos especializados de la matemática para enseñar, que permitan abordar la enseñanza de la matemática desde la planificación hasta la práctica.

Subcompetencias

- 2.1.1. Transformar problemas desde contextos reales a matemáticos mediante la construcción de modelos.
- 2.1.3. Seleccionar, diseñar e implementar planes o estrategias para utilizar la matemática en la resolución de problemas.
- 2.1.6. Comprender, interpretar y manipular expresiones simbólicas, algoritmos, propiedades y construcciones matemáticas en un contexto regido por definiciones, convenciones, sistemas formales y reglas matemáticas.
- 2.1.7. Utilizar recursos tecnológicos para representar objetos y relaciones matemáticas.
- 2.2.2. Conocer distintos problemas que han motivado el desarrollo de la matemática y que se relacionan con aspectos claves de la matemática escolar.
- 2.2.3. Comprender, cuantificar y usar magnitudes y cantidades, considerando la noción de error de medición cuando sea pertinente.
- 2.2.12. Utilizar razonamientos y métodos de carácter algorítmico o de aproximación, cuando sean pertinentes, para analizar y resolver problemas.
- 2.3.6. Dar significado, conectar y comunicar ideas matemáticas a través de explicaciones enfocadas en el por qué y en la justificación de los modelos, métodos y procedimientos.

Vigencia desde	2019-1
Elaborado por	David M. Gómez, Jairo Navarrete
Revisado por	Emilio Vilches